Models API¶
This page documents the model APIs in VisDet.
Detectors¶
Base Detector¶
BaseDetector
¶
Bases: BaseModel
Base class for detectors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_preprocessor
|
dict or ConfigDict
|
The pre-process
config of :class: |
None
|
init_cfg
|
dict or ConfigDict
|
the config to control the initialization. Defaults to None. |
None
|
Source code in visdet/models/detectors/base.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | |
Two-Stage Detectors¶
TwoStageDetector
¶
Bases: BaseDetector
Base class for two-stage detectors.
Two-stage detectors typically consisting of a region proposal network and a task-specific regression head.
Source code in visdet/models/detectors/two_stage.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | |
with_rpn
property
¶
bool: whether the detector has RPN
with_roi_head
property
¶
bool: whether the detector has a RoI head
extract_feat(batch_inputs)
¶
Extract features.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
batch_inputs
|
Tensor
|
Image tensor with shape (N, C, H ,W). |
required |
Returns:
| Type | Description |
|---|---|
tuple[Tensor]
|
tuple[Tensor]: Multi-level features that may have |
tuple[Tensor]
|
different resolutions. |
Source code in visdet/models/detectors/two_stage.py
loss(batch_inputs, batch_data_samples)
¶
Calculate losses from a batch of inputs and data samples.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
batch_inputs
|
Tensor
|
Input images of shape (N, C, H, W). These should usually be mean centered and std scaled. |
required |
batch_data_samples (List[
|
obj: |
required |
Returns:
| Name | Type | Description |
|---|---|---|
dict |
dict
|
A dictionary of loss components |
Source code in visdet/models/detectors/two_stage.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | |
predict(batch_inputs, batch_data_samples, rescale=True)
¶
Predict results from a batch of inputs and data samples with post- processing.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
batch_inputs
|
Tensor
|
Inputs with shape (N, C, H, W). |
required |
batch_data_samples (List[
|
obj: |
required | |
rescale
|
bool
|
Whether to rescale the results. Defaults to True. |
True
|
Returns:
| Type | Description |
|---|---|
SampleList
|
list[:obj: |
SampleList
|
input images. The returns value is DetDataSample, |
SampleList
|
which usually contain 'pred_instances'. And the |
SampleList
|
|
Source code in visdet/models/detectors/two_stage.py
Mask R-CNN¶
MaskRCNN
¶
Bases: TwoStageDetector
Implementation of Mask R-CNN <https://arxiv.org/abs/1703.06870>_
Mask R-CNN extends Faster R-CNN by adding a branch for predicting segmentation masks on each Region of Interest (RoI), in parallel with the existing branch for classification and bounding box regression.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
backbone
|
ConfigDict
|
Configuration for the backbone network. |
required |
rpn_head
|
ConfigDict
|
Configuration for the RPN head. |
required |
roi_head
|
ConfigDict
|
Configuration for the RoI head. |
required |
train_cfg
|
ConfigDict
|
Training configuration. |
required |
test_cfg
|
ConfigDict
|
Testing configuration. |
required |
neck
|
OptConfigType
|
Configuration for the neck network. Default: None. |
None
|
data_preprocessor
|
OptConfigType
|
Configuration for the data preprocessor. Default: None. |
None
|
init_cfg
|
OptMultiConfig
|
Initialization configuration. Default: None. |
None
|