Model Zoo¶
visdet’s “supported models” are the YAML model presets under configs/models/.
At runtime these are discovered automatically (via MODEL_PRESETS), so adding a new YAML file under configs/models/ makes it available everywhere that accepts a model preset name (e.g. SimpleRunner(model=...), DetInferencer(model=...)).
Using A Model Preset¶
Inference¶
from visdet.apis import DetInferencer
# Either use the preset name…
infer = DetInferencer(model="rtmdet_s")
# …or (when present) an alias from `preset_meta.aliases`
infer = DetInferencer(model="rtmdet-s")
result = infer("image.jpg")
Training¶
from visdet import SimpleRunner
runner = SimpleRunner(
model="rtmdet_s",
dataset="coco_detection",
optimizer="adamw_default",
scheduler="1cycle",
)
runner.train()
Supported Models (from configs/models)¶
Two-Stage Detectors¶
faster_rcnn_r50mask_rcnn_r50mask_rcnn_swin_s
RTMDet (Object Detection)¶
rtmdet_tiny(aliases:rtmdet-t,rtmdet-tiny)rtmdet_s(alias:rtmdet-s)rtmdet_m(alias:rtmdet-m)rtmdet_l(alias:rtmdet-l)rtmdet_x(alias:rtmdet-x)
RTMDet-Ins (Instance Segmentation)¶
rtmdet_ins_tiny(aliases:rtmdet-ins-t,rtmdet-ins-tiny)rtmdet_ins_s(alias:rtmdet-ins-s)rtmdet_ins_m(alias:rtmdet-ins-m)rtmdet_ins_l(alias:rtmdet-ins-l)rtmdet_ins_x(alias:rtmdet-ins-x)